
Project Final Report – Distributed Tileable Image
Conversion with Natural Cubic Splines

Andrew Hartz, NAU, CS 599, Flagstaff, USA, AH568@nau.edu

Abstract- This project develops an MPI program to convert
non-tileable images into tileable images. The program utilizes
a modified natural cubic spline method to edit near edge pixel
data and a closest replacement method to ensure that new
pixel colors are selected from colors that previously existed in
the image. The natural cubic spline is used to adjust the trend
rather than the actual values and is forced to behave less
erratically with a modification to the data used in the curve. A
moving average is used perpendicularly to spline calculations
to diminish banding in the results. Where the trend change
results in undesirable colors for pixels, trend editing is
skipped, and the pixel’s original color is used. Image results
are good, giving a tileable image with acceptable distortion, a
slightly crumpled look near the edges. Image results still have
some room for improvement. Performance results compute
quickly but show mediocre to poor parallel scaling with
parallel efficiency of 69% down to 06%.

Index Terms – MPI, distributed computing, natural cubic
splines, tileable images

I. Introduction

This project aims to convert a non-tileable image into a tileable
image. A tileable image is an image that can be repeated
without a noticeable discontinuity at the edge.

The program utilizes MPI to spread the computation among
multiple processing ranks. The program can be run on a
compute cluster in parallel.

The program uses a modified natural cubic spline method to
edit pixels near the right and bottom edges of the image. To
edit the right edge, data is repeated for each row. A curve is fit
using data on either side of the region being edited, excluding
the pixels within the region. This curve is then used to edit the
region of pixels. The same process is repeated for columns to
edit the bottom edge.

PNG images are made up of pixels with four color channels.
Three of these are being edited by this program, red, green,
and blue. Channels have integer values between 0 and 255.

The splines fit to the data consider location as the independent
variable and one of these color channels as the dependent
variable. Each row has three splines, one for each color
channel. Calculations from the three splines are used together

to make up the new color value at a pixel within the near-edge
region.

II. Background

A. Smoothing method

Natural cubic splines can be used to independently fit a smooth
curve to rows and columns of the data. If there is a big jump
in the data, these splines can be used to smooth between given
points without jagged changes in slope. Below is the
conceptual representation of how one would fit a spline to a
single color channel.

Figure 1: Example spline for a row, color red values as the
dependent variable

If the points in the "Replace Data Here" region were included
in the spline calculation, the red line would pass through them.
By excluding those points from the spline calculation, one can
calculate alternative values that will connect to the repeated
data.

One should note that this is not a perfect representation of the
problem. There would be a lot more blue points, and they
would vary up and down much more erratically but would
have an overall trend similar to what is shown.

The spline code produces four coefficients for each segment
between two points. These coefficients can be used in an
equation of the form shown below to estimate the color
intensity for a single color channel.

 Colorx = a+bx+cx2+dx3 (1)

The spline code is based on the seven-step procedure for
calculating splines described in the textbook Numerical
Analysis by Burden and Faires.

B. PNG read and Write

For importing and exporting PNG files, this project uses stb.
Stb is a public domain licensed, free set of c++ files for
importing multiple types of images. The code is available in .h
files containing functions. The files for importing and
exporting PNG files into c++ were included.

Figure 2: Original Non-tileable image repeated

III. Description of the approach to the problem studied

A. Milestones

The milestones that make up the initial project plan are shown
below.

 Read and export png data.
 Implement a smoothing method such as Natural cubic

splines.
 Create a sequential program for calculating Natural

cubic spline results and replacing near edge pixels
 Implement closest values selection from original pixel

colors sequentially.
 Convert spline related code to distributed MPI

computing
 Convert closest values code to distributed MPI

computing
 Run tests tiling images

(a) Read and export png data: An image of rust was chosen
for testing for two reasons. One, it is not a tillable image. It is
a photographed image cut square. Two, the image is primarily
shades of red. This coloration made it easier to decipher the
input from stb and figure out the function inputs for the
stbi_load function. It was easy to see when the color channels
were organized correctly.

(b) Implement a smoothing method: A modification on natural
cubic splines was used for smoothing. The original intention
was to use natural cubic splines based on an algorithm
described in the text Numerical Analysis.

(c) Closest value selection: In this portion of the project, a 3D
array 256 x 256 x 256 is created and initialized to all 0s.
Cycling through each point in the original data, the bin[r][g][b]
is set to 1 for each point. With discrete data limited to a small
range, that seemed to be a good way to handle the problem
rather than any more complex bin solution. The bins are
created on each rank.

The bin array was later converted to a 1D array and a function
was written to convert red green and blue indices to a single
index.

(d) Sequential Program: The sequential program calculated
spline values for near edge pixels. It served no greater purpose
than as a step toward a parallel program.

(e) Parallel Program: The MPI code utilizes MPI_Bcast,
MPI_Allgather, MPI_Allreduce, and MPI_Reduce.
MPI_Bcast is used to pass the imported image data to each
rank. MPI_Allgather shares distributed results of row
calculations. For sharing results of column calculations,
MPI_Gather is used instead since only one rank is needed to
write to file. MPI_AllReduce is used to combine the bin
information on all ranks. A maximum operation is used since
1 is the flag for the color being present in the original image,
and 0 for the color not present in the original image.
MPI_Reduce is used to collect performance time data. Below
is an overview of the basic procedure.

 Image data read into rank 0
 Image data broadcast to all ranks
 Image data is separated into 2D arrays of red, green,

and blue color channels
 Bins are filled in parallel
 Bins are synchronized across all ranks
 Parallel calculations are performed for rows
 Results are synchronized across all ranks
 Parallel calculations are performed for columns
 Results are synchronized on rank 0
 Rank 0 data are converted to the output format and

are written to file.

(f) Convert Spline code to MPI: The spline calculations and
bin replacement were split between ranks. The results were
then converted to the closest values.

(g) Convert Closest Values to MPI: Instead of writing directly
into the 2D output array, it was necessary to crate intermediary
1D arrays for local results and global results. These 1D arrays
only contain the data that is being changed. It is easy to use

MPI_Allgather or MPI_Gather to combine the local data into
the global data. The 2D output array is updated with the
values from the 1D global results.
It is necessary to use fixed intervals size for the number of
rows or columns assigned to each rank. Rather than assigning
extra rows to the last rank, the extra rows are split evenly, and
dummy rows are assigned to the last rank to even out the array
sizes. These dummy rows are passed around but not
calculated.

B. Adaptations

A list below shows subsequent adaptations to the project that
were not originally planned for but were required to attain a
better result.

 Tamping down spline fluctuation by copying edge
values

 Cubic spline trend adjustment rather than
replacement

 Outlier skip
 Perpendicular smoothing

(a)Tamping down spline fluctuation by copying edge values:
There was an apparent bug in the spline replacement of pixel
colors. One can see where the near edge column spline data
overrides the row data since they look terrible in different
patterns.

Figure 3: Buggy Image result of Spline calculation

Figure 4: Erratic Spline

Figure 4 shows color intensities for a single row. Notice that
the curve peaks above 255, the maximum color intensity
allowed for a pixel color channel. What is seen above is the
effect of erratically changing data on a spline. This erratic
change in consecutive color intensities causes curves with
massive arches.

Cubic splines preserve continuous third-order relationships at
each point. Two curves end at each point, one to the left and
one to the right. For the point's x value, both curves evaluate
the same y, dy/dx (slope), and d2y/dx2 (instantaneous rate of
change).

A straightforward use of a cubic spline with our data does not
interpolate values between the data points well because a row
of color data does not change smoothly from point to point.
Also, a cubic spline fit to the data is not bounded by the
desired output range. This is a problem that could not be
overcome without simplifying the spine.

Figure 5: Tamped down spline

To solve this bug the color values of the points bounding the
region of points being replaced are copied outward away from
the region. The result shown in Figure 5 is a curve that is

0 50 100 150 200 250 300
0

100

200

300

Location

C
o

lo
r

In
te

n
si

ty

0 50 100 150 200 250 300
0

10

20

30

40

50

Location

C
o

lo
r

In
te

n
si

ty

much more likely to remain within the range of acceptable
color values.

Unfortunately, this curve is not a true spline and is not
influenced by the rest of the data in the row. This pseudo-
spline was meant to be a temporary solution until a way was
found to reincorporate the remaining row data in a manner that
was not erratic.

An argument is included when the program is run. This
argument specifies how far to copy color data outward; it is
named NUMSETEQ. For example, if the value is set to three,
then the pixel just before the region has its colors copied to the
three pixels before it. Also, the pixel just after the region has
its colors copied to the three pixels after it. Since we are using
cubic splines, value of NUMSETEQ >= 3 causes only one
point’s color data on either side of the region to actually affect
the curve. It gives a tame result at the cost of of being less true
to the data.

Figure 6: Tamped down spline resulting image too smooth

The result of using a spline to replace color information near
the edges of the image was overly smoothed. Everywhere else
in the image color changes erratically, and the smooth data
curves look out of place.

There is a similarity in the color tone, but the spline results are
missing the essential variability of the data.

Also, it should be noted that the bin selection function passes
through any pixel colors below 0 or above 255 without
changing them. This counterintuitive way of handling
erroneous data was beneficial when developing adjustments,

since errors were more visible. The bin selection function has
not been changed.

(b) Cubic spline trend adjustment rather than replacement:
Trend adjustment is used to solve the over smoothing problem.
Changing the use of the curve from calculating color data to
trend adjustment involves multiple steps:

 copying original data into the local vector
 creating the curve for the new trend
 creating the curve from the old trend
 adjusting the original data with the difference in the

trends

Two spline curves are created the "new," which captures how
you want the data to trend so that it will tile, and the "old,"
which is the trend of the data already has without tiling.

The "new" curve uses the same curve that was used to replace
data before. It includes data up to the edge of the region we
are replacing, leaving out the data from the region being
replaced. Then it repeats the row data after the gap adjusting
location information. The colors repeat, but the locations
continue increasing with a large gap in their values for the
missing data. The curve fills the gap.

The "old curve works the same way except that the gap stops
one point earlier. Before the data repeats, the last point from
the line (row or column) is included. A curve is fit to the data
before the data is repeated.

Figure 7: Spline adjustment results outliers

The program then takes the original data, subtracts the old
trend, and adds the new trend. The result is that the data tiles,
and also includes the erratic fluctuations from the original data.
New problems arise, but this is a step in the right direction.

The new problems are outliers and what looks like crumpled
edges or bands of lighter or darker color. The problem of
outliers is caused by local maxima or minima excessively
exaggerated by trend adjustment.

(c) Outlier skip: Outlier skip is a straightforward solution. If
adjusting the trend of a point gives a bad result, then do not
adjust the trend of that point. Skipping a trend adjustment of
problem points here and there does not seem to create any
noticeable artifacts. It is an effective solution to the outlier
problem.

Determining the distance from the edge where spline results
should replace pixels is left to the user.

The images in this paper show testing with a much larger
distance than would be desirable, 256 pixels. The intent is for
the changes to the image to be more noticeable while testing.
With the final method, even this range did not look too bad.
There is an effect that looks like the image is banded or
crumpled near the edge.

Figure 8: Outlier skip resulting image banding

(d) Perpendicular smoothing: A moving average is calculated
perpendicular to the spline calculations to mitigate the edge
crumple problem.

When considering the 1D array of local color data, this
smoothing is not performed on the original data initially filling
the array. It affects the new and old spline data. It is, in

essence, a moving average of trend lines, so adjacent trends are
similar. This trick eliminates banding and reduces crumple.
However, the crumpled effect seems not to be entirely
avoidable. Reducing the length of the edge region makes it
less noticeable.

Figure 9: Final result after perpendicular smoothing

C. Possible Improvements

The following changes have not been implemented but may be
beneficial.

 Smoothing along the spline direction
 Increased Interval spacing for spline calculation

(a) Smoothing along the spline direction: This method is
intended to be an extension of the moving average of
perpendicular smoothing to include a moving average in the
direction of the spline as well.

(b) Increased interval spacing for spline calculation: It is
hypothesized that a spline with more widely spaced nodes may
behave in a less erratic manner more useful to this calculation.

Not every pixel in the direction of the spline would be
included in the spline calculation. Pixels would be skipped at
a fixed interval defined by the user.

This interval spacing may be more effective in combination
with smoothing along the spline direction. Since smoothing
along the spline direction does not use the interval spacing in

the moving average calculation, data being skipped over still
affects the moving average calculations.

IV. Results

The current results are shown below. The 1024 by 1024 (1K)
rust image was tested to see how well it performed in parallel.
Between 1 and 20 ranks were used. The times measured were
the total time of execution, the time excluding reading and
writing of the image to disk, the time performing
communication, and the computation time (Exclude IO –
Communication).

Table 1
Time 1K Texture

of
Ranks Total

 Exclude
IO Computation Communication

1 0.725 0.366 0.345 0.021
2 0.601 0.244 0.193 0.055
4 0.539 0.188 0.110 0.079
8 0.522 0.172 0.070 0.102

12 0.561 0.211 0.060 0.177
16 0.518 0.166 0.050 0.115
20 0.61 0.24 0.05 0.206

From these time measurements, speedup and parallel
efficiency could be calculated. By comparing the total column
to the Exclude IO column in the Time, Speedup, and Parallel
Efficiency tables, one can see that IO dominates the
calculation time. IO especially dominates with a higher
number of ranks. Parallel efficiency is poor, between 0.32 and
0.08. IO uses serial computation and brings down speedup and
parallel efficiency.

Table 2
Speedup

of Ranks Total
 Exclude
IO Computation Communication

1 1 1 1 1
2 1.21 1.50 1.79 0.38
4 1.35 1.94 3.14 0.27
8 1.39 2.13 4.95 0.21

12 1.29 1.73 5.79 0.12
16 1.40 2.21 6.84 0.18
20 1.19 1.53 6.74 0.10

Table 3
Parallel Efficiency

of RanksTotal
 Exclude
IO Computation Communication

1 1 1 1 1
2 0.60 0.75 0.90 0.192
4 0.34 0.49 0.79 0.067
8 0.17 0.27 0.62 0.026

12 0.11 0.14 0.48 0.010
16 0.09 0.14 0.43 0.011
20 0.06 0.08 0.34 0.005

Excluding IO improves parallel efficiency, especially at higher
ranks. Even so, parallel efficiency, as seen in Table 3, is only
good for a low number of ranks. Without IO considered
parallel efficiency is between 0.75 to 0.08.

Table 4
Time 8K Texture

of
Ranks Total

 Exclude
IO Computation Communication

1 54.456 33.788 33.753 0.036
2 39.623 18.855 18.701 1.132
4 30.781 10.014 9.506 0.634
8 26.682 5.854 5.521 0.388

12 25.788 4.867 4.495 0.532
16 25.195 4.383 3.996 0.420
20 25.25 4.32 3.78 1.700

Table 4 through 6 repeat tables 1 through 3 for an 8K texture.
As can be seen by comparing Table 6 to Table 3 parallel
efficiency is slightly higher for larger textures but is still
mediocre between 69% and 11%.

Table 5
8K Speedup

of RanksTotal
 Exclude
IO Computation Communication

1 1 1 1 1

2 1.37 1.79 1.80 0.03
4 1.77 3.37 3.55 0.06
8 2.04 5.77 6.11 0.09

12 2.11 6.94 7.51 0.07
16 2.16 7.71 8.45 0.08
20 2.16 7.82 8.92 0.02

Table 6
8K Parallel Efficiency

of Ranks Total
 Exclude
IO Computation Communication

1 1 1 1 1
2 0.69 0.90 0.90 0.016
4 0.44 0.84 0.89 0.014
8 0.26 0.72 0.76 0.011

12 0.18 0.58 0.63 0.006
16 0.14 0.48 0.53 0.005
20 0.11 0.39 0.45 0.001

The tests described above had NUMSETEQ set to three. This
value signifies that the calculation does not utilize information
from the full spline. Tests were performed with NUMSETEQ
< 3 to reincorporate the rest of the spline, but image results
were poor.

Figure 10: Removing Tamped down values Left NUMSETEQ
= 0, Right NUMSETEQ = 2

V. Discussion and Conclusion

There is likely room to optimize this solution for parallel
efficiency. Current parallel efficiency is mediocre to poor.
The calculation is still fast with the small data sizes of textures
compared to other types of data sets commonly used with MPI.

Good results for the output image were achieved. The
program can create output images that tile well and look
similar to the original image. The program has some problems
with an effect that makes the edge of the image look somewhat
crumpled. There is room for improvement.

The spline calculation had to be adjusted with moving
averages and have color intensities tamping down near the
region being edited so that the curve would not fluctuate
erratically. The solution is acceptable but not ideal.

Ideally, the color intensities for the curve for the near edge
region would be limited to the range of png color intensities
from 0 to 255. The curve would incorporate the underlying
data trend outside the region to influence the shape of the
curve within the region. A natural cubic spine does not seem
to be the appropriate tool for this job. Natural cubic splines
may be effective with some transformation or pre and post-
treatment of the data.

VI. References

R. Burden and J. Faires, Numerical Analysis, Ninth Edition,
pg 149. Boston, MA, USA: Brooks/Cole, Cengage Learning,
2011.
S. Barrett, stb, GitHub. https://github.com/nothings/stb
(accessed April 27, 2022).

https://github.com/nothings/stb

	​ Project Final Report – Distributed Tileable Image Conversion with Natural Cubic Splines
	​ I. Introduction
	​ II. Background
	​ III. Description of the approach to the problem studied
	​ IV. Results
	​ Figure 10: Removing Tamped down values Left NUMSETEQ = 0, Right NUMSETEQ = 2
	​ V. Discussion and Conclusion

